Broken force dispersal network in tip-links by the mutations induces hearing-loss

Author:

Hazra Jagadish P.,Sagar Amin,Arora Nisha,Deb Debadutta,Kaur Simerpreet,Rakshit SabyasachiORCID

Abstract

AbstractTip-link as force-sensor in the hearing conveys the mechanical force originating from sound to ion-channels while maintaining the integrity of the entire sensory assembly in inner-ear. This delicate balance between structure and function of tip-links is regulated by Ca2+-ions present in endolymph. Mutations at the Ca2+-binding sites of tip-links often lead to congenital deafness, sometimes syndromic defects impairing vision along with hearing. Although such mutations are already identified, it is still not clear how the mutants alter the structure-function properties of the force-sensors associated with diseases. With an aim to decipher the differences in force-conveying properties of the force-sensors in molecular details, we identified the conformational variability of mutant and wild-type tip-links at the single-molecule level using FRET at the endolymphatic Ca2+ concentrations and subsequently measured the force-responsive behavior using single-molecule force spectroscopy with an AFM. AFM allowed us to mimic the high and wide range of force ramps (103 - 106 pN.s−1) as experienced in the inner ear. We performed in silico network analyses to learn that alterations in the conformations of the mutants interrupt the natural force-propagation paths through the sensors and make the mutant tip-links vulnerable to input forces from sound stimuli. We also demonstrated that a Ca2+ rich environment can restore the force-response of the mutant tip-links which may eventually facilitate the designing of better therapeutic strategies to the hearing loss.Significance StatementForce-sensors in inner ear are the key components in the hearing. Mutations in force-sensors often lead to congenital hearing loss. Loss of hearing has become a threat to humanity, with over 5% of world population suffering from deafness and 40% of which is congenital, primarily due to mutations in the sensory machinery in inner-ear. A better understanding of the molecular mechanism of the underlined hearing loss due to mutations is, therefore, necessary for better therapeutics to deaf. Here with a zoomed region of the force-sensors, we pointed out the differences in the force-propagation properties of the mutant and wild-type force-sensors. Our observation on restoring of functions of mutants in Ca2+-rich buffer indicates methods of developing low-cost therapeutic strategies against deafness.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3