Convergent loss of an EDS1/PAD4 signalling pathway in several plant lineages predicts new components of plant immunity and drought response

Author:

Baggs EL,Thanki AS,O’Grady R,Schudoma C,Haerty W,Krasileva KV

Abstract

AbstractPlant innate immunity relies on NLR receptors that recognize pathogen derived molecules and activate downstream signalling pathways. We analyzed the variation in copy number of NLR genes across flowering plants, and identified a number of species with a low number of NLRs relative to sister species. Two distinct lineages, one monocot (Lentibulariaceae) and one dicot (Alismatales) encapsulate four species with particularly few NLR genes. In these lineages, loss of NLRs coincided with loss of the well-known downstream immune signalling complex (EDS1-PAD4). When we expanded our analysis across the whole proteomes, we were able to identify other characterized immune genes absent only in Lentibulariaceae and Alismatales. Additionally, we identified a small subset of genes with unknown function convergently lost in all four species. We predicted that some of these genes may have a role in plant immunity. Gene expression analyses confirmed that a group of these genes was differentially expressed under pathogen infection. Another subset of these genes was differentially expressed upon drought providing further evidence of a link between the drought and plant immunity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3