Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey

Author:

Galanis AnastasiosORCID,Vardakas Philippos,Reczko MartinORCID,Harokopos VaggelisORCID,Hatzis Pantelis,Skoulakis Efthimios M. C.ORCID,Pavlopoulos Georgos A.ORCID,Patalano SolennORCID

Abstract

AbstractHoneybees (Apis mellifera) continue to succumb to human and environmental pressures despite their crucial role in providing essential ecosystem services. Owing to their foraging and honey production activities, honeybees form complex relationships with species across all domains, such as plants, viruses, bacteria (symbiotic and pathogenic), and other hive pests, making honey a valuable biomonitoring tool for assessing their ecological niche. Thus, the application of honey shotgun metagenomics (SM) has paved the way for a detailed description of the species honeybees interact with, in order to better assess the multiple factors governing their health. Here, we describe the implementation of optimized honey DNA extraction methodology coupled to direct shotgun metagenomics (Direct-SM) analysis, and to a computationally optimised and validated pipeline for taxonomic classification of species detected in honey. By comparing honey collected across 3 harvesting seasons in a stable apiary, we show that Direct-SM can describe the variability of sampled plant species, revealing honeybee behavioural adaptation. In addition, we reveal that Direct-SM can non-invasively capture the diversity of species comprising the core and non-core bacterial communities of the gut microbiome. Finally, we show that this methodology is applicable for the monitoring of pathogens and particularly for the biomonitoring varroa infestation. These results suggest that Direct-SM can accurately and comprehensively describe honeybee ecological niches and can be deployed to assess bee health in the field.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3