Capsid-E2 interactions rescue core assembly in viruses that cannot form cytoplasmic nucleocapsid cores

Author:

Button Julie M.,Mukhopadhyay Suchetana

Abstract

ABSTRACTAlphavirus capsid proteins (CPs) have two domains: the N-terminal domain (NTD) that interacts with the viral RNA, and the C-terminal domain (CTD) that forms CP-CP inter-actions and interacts with the cytoplasmic domain of the E2 spike protein (cdE2). In this study, we examine how mutations in the CP NTD affect CP CTD interactions with cdE2. We changed the length and/or charge of the NTD of Ross River virus CP and found that changing the charge of the NTD has a greater impact on core and virion assembly than changing the length of the NTD. The NTD CP insertion mutants are unable to form cyto-plasmic cores during infection but they do form cores or core-like structures in virions. Our results are consistent with cdE2 having a role in core maturation during virion assembly and rescuing core formation when cytoplasmic cores are not assembled. We go on to find that the isolated cores from some mutant virions are now assembly competent in that they can be disassembled and reassembled back into cores. These results show how the two domains of CP may have distinct yet coordinated roles.IMPORTANCEStructural viral proteins have multiple roles during entry and assembly. The capsid protein (CP) of alphaviruses has one domain that interacts with the viral genome and another domain that interacts with the E2 spike protein. In this work we determine that the length and/or charge of the CP affects cytoplasmic core formation. However, defects in cytoplasmic core formation can be overcome by E2-CP interactions, thus assembling a core or core-like complex in the virion. In the absence of both cytoplasmic cores and CP-E2 interactions, CP is not even packaged in the released virions, but some infectious particles are still released presumably as RNA packaged in a glycoprotein containing membrane shell. This suggests that the virus has multiple mechanisms in place to ensure the viral genome is surrounded by a capsid core during its lifecycle.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3