High-throughput screening of aqueous two-phase systems for polyphenol extraction from A. nodosum: a green chemistry approach

Author:

Olivares-Molina AlexORCID,Parker BrendaORCID

Abstract

AbstractBrown macroalgae are an attractive third-generation feedstock of natural products, in order to design green chemistry-compliant processes and reduce the use of organic solvents in bioactive product extraction, aqueous two-phase systems (ATPS) was applied. This research aimed to develop a high-throughput screening (HTS) to recover polyphenols from Ascophyllum nodosum using ATPS. In total, 384 different 2-phase systems were assessed using an automated liquid-handling system to evaluate polyphenol recovery using a model system of phloroglucinol to establish an optimal 2-phase system for polyphenol partitioning. Various ratios of PEG:potassium phosphate solutions were explored to evaluate partitioning of polyphenols via a scale-down approach. Scale-down selected system showed a recovery of phloroglucinol of 62.9±12.0%, this system was used for scale-up trials. Scale-up studies confirmed that the HTS method was able to recover polyphenols with a 54.8±14.2% in the phloroglucinol model system. When the optimised ATPS system was tested with a polyphenol extract, 93.62±8.24% recovery was observed. When ATPS was applied to a fucoidan and alginate biorefinery residue, 88.40±4.59% polyphenol was recovered. These findings confirm that ATPS is a valuable addition to the bioprocess toolkit for sustainable extraction of natural products from macroalgae in a multiproduct biorefinery approach.Practical applicationSelection of the best concentrations of phase-forming components and recovery conditions for the application of aqueous two-phase systems in an industrial setup has been proved to be laborious and cumbersome. This paper presents an automated platform to rapidly assess several ATPS to recover polyphenols from brown macroalgae and a subsequent confirmation with the scale-up of the potential candidates and contrasted with two case studies. This methodology allows a quick screening for the best aqueous two-phase system and can be expanded to recover high-value products from other types of macroalgae or microalgae.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3