Intramolecular carbon isotope signals reflect metabolite allocation in plants

Author:

Wieloch ThomasORCID,Sharkey Thomas DavidORCID,Werner Roland Anton,Schleucher Jürgen

Abstract

AbstractStable isotopes at natural abundance are key tools to study physiological processes occurring outside the temporal scope of manipulation and monitoring experiments. Whole-molecule carbon isotope ratios (13C/12C) enable assessments of plant carbon uptake yet conceal information about carbon allocation. Here, we identify an intramolecular 13C/12C signal at treering glucose C-5 and C-6 and develop experimentally testable theories on its origin. More specifically, we assess the potential of processes within C3 metabolism for signal introduction based (inter alia) on constraints on signal propagation posed by metabolic networks. We propose that the intramolecular signal reports carbon allocation into major metabolic pathways in actively photosynthesising leaf cells including the anaplerotic, shikimate, and non-mevalonate pathway. We support our theoretical framework by linking it to previously reported whole-molecule 13C/12C increases in cellulose of ozone-treated Betula pendula and a highly significant relationship between the intramolecular signal and tropospheric ozone concentration. Our theory postulates a pronounced preference of leaf-cytosolic triose-phosphate isomerase to catalyse the forward reaction in vivo (dihydroxyacetone phosphate to glyceraldehyde 3-phosphate). In conclusion, intramolecular 13C/12C analysis resolves information about carbon uptake and allocation enabling more comprehensive assessments of carbon metabolism than whole-molecule 13C/12C analysis.HighlightIntramolecular 13C/12C analysis resolves information about carbon uptake and allocation (and associated environmental controls) enabling more comprehensive assessments of carbon metabolism, plant-environment interactions, and environmental variability than whole-molecule 13C/12C analysis.

Publisher

Cold Spring Harbor Laboratory

Reference111 articles.

1. Carbon allocation to major metabolites in illuminated leaves is not just proportional to photosynthesis when gaseous conditions (CO2 and O2) vary;New Phytologist,2018

2. CARBON ISOTOPE FRACTIONATION IN FORMATION OF AMINO ACIDS BY PHOTOSYNTHETIC ORGANISMS

3. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change

4. The biosynthesis of cell wall carbohydrates;III. Further studies on formation of cellulose and xylan from labeled monosaccharides in wheat plants. Canadian Journal of Biochemistry and Physiology,1956

5. Plant pyruvate kinase;Biologia Plantarum,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3