Detecting global influence of transcription factor interactions on gene expression in lymphoblastoid cells using neural network models

Author:

Patel Neel,Bush William S.ORCID

Abstract

AbstractBackgroundTranscription factor(TF) interactions are known to regulate target gene(TG) expression in eukaryotes via TF regulatory modules(TRMs). Such interactions can be formed due to co-localizing TFs binding proximally to each other in the DNA sequence or over long distances between distally binding TFs via chromatin looping. While the former type of interaction has been characterized extensively, long distance TF interactions are still largely understudied. Furthermore, most prior approaches have focused on characterizing physical TF interactions without accounting for their effects on TG expression regulation. Understanding TRM based TG expression regulation could aid in understanding diseases caused by disruptions to these mechanisms. In this paper, we present a novel neural network based TRM detection approach that consists of using multi-omics TF based regulatory mechanism information to generate features for building non-linear multilayer perceptron TG expression prediction models in the GM12878 immortalized lymphoblastoid cells.ResultsWe estimated main effects of 149 individual TFs and interaction effects of 48 distinct combinations of TFs forming TRMs based on their influence on TG expression. We identified several well-known and discovered multiple previously uncharacterized TF interactions within our detected set of TRMs. We further characterized the pairwise TRMs using long distance chromatin looping and motif co-occurrence data. We found that nearly all the TFs constituting TRMs detected by our approach interacted via chromatin looping, and that these TFs further interacted with promoters to influence TG expression through one of four possible regulatory configurations.ConclusionHere, we have provided a framework for detecting TRMs using neural network models containing multi-omics TF based regulatory features. We have also described these TRMs based on their regulatory potential along with presenting evidence for the possibility of TF interactions forming the TRMs occurring via chromatin looping.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3