Rapid Biomarker Screening of Alzheimer’s Disease by Machine Learning and Graphene-Assisted Raman Spectroscopy

Author:

Wang Ziyang,Ye Jiarong,Ding Li,Granzier-Nakajima Tomotaroh,Sharma Shubhang,Biase Isabelle,Terrones Mauricio,Choi Se Hoon,Ran Chongzhao,Tanzi Rudolph E.,Huang Sharon X.,Zhang Can,Huang Shengxi

Abstract

AbstractAs the most common cause of dementia, Alzheimer’s disease (AD) faces challenges in terms of understanding of pathogenesis, developing early diagnosis and developing effective treatment. Rapid and accurate identification of AD biomarkers in the brain will be critical to provide novel insights of AD. To this end, in the current work, we developed a system that can enable a rapid screening of AD biomarkers by employing Raman spectroscopy and machine learning analyses in AD transgenic animal brains. Specifically, we collected Raman spectra on slices of mouse brains with and without AD, and used machine learning to classify AD and non-AD spectra. By contacting monolayer graphene with the brain slices, we achieved significantly increased accuracy from 77% to 98% in machine learning classification. Further, we identified the Raman signature bands that are most important in classifying AD and non-AD samples. Based on these, we managed to identify AD-related biomolecules, which have been confirmed by biochemical studies. Our Raman-machine learning integrated method is promising to greatly accelerate the study of AD and can be potentially extended to human samples and various other diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3