Abstract
AbstractThe fatty acid composition of seed oil is a major determinant of the flavor, shelf-life, and nutritional quality of peanuts. Major QTLs controlling high oil content, high oleic content, and low linoleic content have been characterized in several seed oil crop species. Here we employ genome-wide association approaches on a recently genotyped collection of 787 plant introduction accessions in the USDA peanut core collection, plus selected improved cultivars, to discover markers associated with the natural variation in fatty acid composition, and to explain the genetic control of fatty acid composition in seed oils.Overall, 251 single nucleotide polymorphisms (SNPs) had significant trait associations with the measured fatty acid components. Twelve SNPs were associated with two or three different traits. Of these loci with apparent pleiotropic effects, 10 were associated with both oleic (C18:1) and linoleic acid (C18:2) content at different positions in the genome. In all 10 cases, the favorable allele had an opposite effect - increasing and lowering the concentration, respectively, of oleic and linoleic acid. The other traits with pleiotropic variant control were palmitic (C16:0), behenic (C22:0), lignoceric (C24:0), gadoleic (C20:1), total saturated, and total unsaturated fatty acid content. One hundred (100) of the significantly associated SNPs were located within 1000 kbp of 55 genes with fatty acid biosynthesis functional annotations. These genes encoded, among others: ACCase carboxyl transferase subunits, and several fatty acid synthase II enzymes.With the exception of gadoleic (C20:1) and lignoceric (C24:0) acid content, which occur at relatively low abundance in cultivated peanut, all traits had significant SNP interactions exceeding a stringent Bonferroni threshold (α = 1%). We detected 7,682 pairwise SNP interactions affecting the relative abundance of fatty acid components in the seed oil. Of these, 627 SNP pairs had at least one SNP within 1000 kbp of a gene with fatty acid biosynthesis functional annotation. We evaluated 168 candidate genes underlying these SNP interactions. Functional enrichment and protein-to-protein interactions supported significant interactions (p- value < 1.0E-16) among the genes evaluated. These results show the complex nature of the biology and genes underlying the variation in seed oil fatty acid composition and contribute to an improved genotype-to-phenotype map for fatty acid variation in peanut seed oil.Key phrasesSNP Genotyping, Genome-wide Association Study (GWAS), GWAS of interacting SNPs (GWASi), Pleiotropy, Seed fatty acid composition, Oleic-Linoleic acid ratio.
Publisher
Cold Spring Harbor Laboratory
Reference84 articles.
1. Anon . 2000. Release of ‘ jupiter ’ peanut. oklahoma state university, oklahoma agricultural experimental station, usa.
2. Bifunctional lipid-transfer: Fatty acid-binding proteins in plants;Molecular and cellular biochemistry,1990
3. Carbocyclic fatty acids in plants: Biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida
4. Genotyping and fatty acid composition analysis in segregating peanut (arachis hypogaea l.) populations;Peanut Sci,2011
5. Genotypic effect of ahfad2 on fatty acid profiles in six segregating peanut (arachis hypogaea l) populations;BMC genetics,2013