Temporal derivative computation in the dorsal raphe network revealed by an experimentally-driven augmented integrate-and-fire modeling framework

Author:

Harkin Emerson F.ORCID,Payeur Alexandre,Lynn Michael B.ORCID,Boucher Jean-François,Caya-Bissonnette LéaORCID,Cyr Dominic,Stewart Chloe,Longtin AndréORCID,Naud RichardORCID,Béïque Jean-ClaudeORCID

Abstract

AbstractBy means of an expansive innervation, the relatively few phylogenetically-old serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) are positioned to enact coordinated modulation of circuits distributed across the entire brain in order to adaptively regulate behavior. In turn, the activity of the DRN is driven by a broad set of excitatory inputs, yet the resulting network computations that naturally emerge from the excitability and connectivity features of the various cellular elements of the DRN are still unknown. To gain insight into these computations, we developed a flexible experimental and computational framework based on a combination of automatic characterization and network simulations of augmented generalized integrate-and-fire (aGIF) single-cell models. This approach enabled the examination of causal relationships between specific excitability features and identified population computations. We found that feedforward inhibition of 5-HT neurons by heterogeneous DRN somatostatin (SOM) neurons implemented divisive inhibition, while endocannabinoid-mediated modulation of excitatory drive to the DRN increased the gain of 5-HT output. The most striking computation that arose from this work was the ability of 5-HT output to linearly encode the derivative of the excitatory inputs to the DRN. This network computation primarily emerged from the prominent adaptation mechanisms found in 5-HT neurons, including a previously undescribed dynamic threshold. This novel computation in the DRN provides a potential mechanism underlying some of the functions recently ascribed to 5-HT in the context of reinforcement learning.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3