Parameter identifiability and model selection for sigmoid population growth models

Author:

Simpson Matthew JORCID,Browning Alexander P,Warne David J,Maclaren Oliver J,Baker Ruth E

Abstract

AbstractSigmoid growth models, such as the logistic, Gompertz and Richards’ models, are widely used to study population dynamics ranging from microscopic populations of cancer cells, to continental-scale human populations. Fundamental questions about model selection and parameter estimation are critical if these models are to be used to make practical inferences. However, the question of parameter identifiability – whether a data set contains sufficient information to give unique or sufficiently precise parameter estimates – is often overlooked. We use a profile-likelihood approach to explore practical parameter identifiability using data describing the re-growth of hard coral. With this approach, we explore the relationship between parameter identifiability and model misspecification, finding that the logistic growth model does not suffer identifiability issues for the type of data we consider whereas the Gompertz and Richards’ models encounter practical non-identifiability issues. This analysis of parameter identifiability and model selection is important because different growth models are used within areas of the biological modelling literature without necessarily considering whether parameters are identifiable, or checking statistical assumptions underlying model adequacy. Standard practices that do not consider parameter identifiability can lead to unreliable or imprecise parameter estimates and potentially misleading mechanistic interpretations. While tools developed here focus on three standard sigmoid growth models only, our theoretical developments are applicable to any sigmoid growth model and any relevant data set. MATLAB implementations of all software are available on GitHub.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3