Abstract
AbstractIncreases in speed and sensitivity enabled rapid clinical adoption of optical coherence tomography (OCT) in ophthalmology. Recently visible-light OCT (vis-OCT) achieved ultrahigh axial resolution, improved tissue contrast, and new functional imaging capabilities, demonstrating the potential to improve clincal care further. However, limited speed and sensitivity caused by the high relative intensity noise (RIN) in supercontinuum lasers impeded the clinical adoption of vis-OCT. To overcome these limitations, we developed balanced-detection vis-OCT (BD-vis-OCT), which uses two calibrated spectrometers to cancel noises common to sample and reference arms, including RIN. We analyzed the RIN to achieve a robust pixel-to-pixel calibration between the two spectrometers and showed that BD-vis-OCT enhanced system sensitivity by up to 22.2 dB. We imaged healthy volunteers at an A-line rate of 125 kHz and a field-of-view as large as 10 mm × 4 mm. We found that BD-vis-OCT revealed retinal anatomical features previously obscured by the noise floor.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献