Abstract
AbstractMigration can modify interaction dynamics between parasites and their hosts with migrant hosts able to disperse parasites and impact local community transmission. Thus, studying the relationships among migratory hosts and their parasites is fundamental to elucidate how migration shapes host-parasite interactions. Avian haemosporidian parasites are some of the most prevalent, diverse, and important wildlife parasites, and are also widely used as models in ecological and evolutionary research. Here, we contrast parasite taxonomic composition, network centrality and partner fidelity among resident and non-resident hosts using avian haemosporidians as study model. In order to evaluate parasite taxonomic composition, we performed permutational multivariate analyses of variance to quantify dissimilarity in haemosporidian lineages infecting different host migratory categories. Additionally, we ran multilevel Bayesian models to assess the role of migration in determining centrality and partner fidelity in host-parasite networks of avian hosts and their respective haemosporidian parasites. We observed similar parasite taxonomic composition and partner fidelity among resident and migratory hosts. Conversely, we demonstrate that migratory hosts play a more central role in host-parasite networks than residents. However, when evaluating partially and fully migratory hosts separately, we observed that only partially migratory species presented higher network centrality when compared to resident birds. Therefore, migration does not lead to differences in both parasite taxonomic composition and partner fidelity. However, migratory behavior is positively associated with network centrality, indicating migratory hosts play more important roles in shaping host-parasite interactions and influence local transmission.
Publisher
Cold Spring Harbor Laboratory
Reference38 articles.
1. Animal Migration and Infectious Disease Risk
2. Avian malaria and related parasites from resident and migratory birds in the brazilian atlantic forest, with description of a new Haemoproteus species;Pathogens,2021
3. Structure and Dynamics of Ecological Networks
4. Migratory Animals Couple Biodiversity and Ecosystem Functioning Worldwide
5. A new real-time PCR protocol for detection of avian haemosporidians;Parasites and Vectors,2015