Automatic Electrophysiological Noise Reduction and Epileptic Seizure Detection for Stereoelectroencephalography

Author:

Zhou Yufeng,You Jing,Zhu Fengjun,Bragin Anatol,Engel Jerome,Li Lin

Abstract

AbstractThe objective of this study was to develop a computational algorithm capable of locating artifacts and identifying epileptic seizures, which specifically implementing in clinical stereoelectroencephalography (SEEG) recordings. Based on the nonstationary nature and broadband features of SEEG signals, a comprehensive strategy combined with the complex wavelet transform (CWT) and multi-layer thresholding method was implemented for both noise reduction and seizure detection. The artifacts removal pipeline integrated edge artifact removal, discrete spectrum analysis, and peak density evaluation. For automatic seizure detection, integrated power analysis and multi-dynamic thresholding were applied. The F1-score was applied to evaluate overall performance of the algorithm. The algorithm was tested using expert-marked, double-blinded, clinical SEEG data from seven patients undergoing presurgical evaluation. This approach achieved the F1 score of 0.86 for noise reduction and 0.88 for seizure detection. This offline-approach method with minimum parameter tuning procedures and no prior information required, proved to be a feasible and solid solution for clinical SEEG data evaluation. Moreover, the algorithm can be improved with additional tuning and implemented with machine learning postprocessing pipelines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3