Abstract
AbstractThousands of scientific articles describing genes associated with human diseases are published every week. Computational methods such as text mining and machine learning algorithms are now able to automatically detect these associations. In this study, we used a cognitive computing text-mining application to construct a knowledge network comprised of 3,723 genes and 99 diseases. We then tracked the yearly changes on these networks to analyze how our knowledge has evolved in the past 30 years. Our approach helped to unravel the molecular bases of diseases over time, and to detect shared mechanisms between clinically distinct diseases. It also revealed that multi-purpose therapeutic drugs target genes which are commonly associated with several psychiatric, inflammatory, or infectious disorders. By navigating in this knowledge tsunami, we were able to extract relevant biological information and insights about human diseases.
Publisher
Cold Spring Harbor Laboratory