Localization and phosphorylation in the Snf1 network is controlled by two independent pathways

Author:

Welkenhuysen Niek,Österberg Linnea,Persson Sebastian,Hohmann Stefan,Cvijovic Marija

Abstract

AbstractAMPK/SNF1 is the master regulator of energy homeostasis in eukaryotic cells and has a key role in glucose de-repression. If glucose becomes depleted, Snf1 is phosphorylated and activated. Activation of Snf1 is required but is not sufficient for mediating glucose de-repression indicating a second glucose-regulated step that adjusts the Snf1 pathway. To elucidate this regulation, we further explore the spatial dynamics of Snf1 and Mig1 and how they are controlled by concentrations of hexose sugars. We utilize fluorescence recovery after photobleaching (FRAP) to study the movement of Snf1 and how it responds to external glucose concentrations. We show that the Snf1 pathway reacts both to the presence and to the absolute concentration of glucose. Furthermore, we identify a negative feedback loop regulating Snf1 activity. We also show that Mig1 localization correlates with the Snf1 phosphorylation pattern and not with the Mig1 phosphorylation pattern, suggesting that inactivation of Snf1 has a more pronounced effect on the localization of Mig1 than on the phosphorylation of Mig1. Our data offer insight into the true complexity of regulation of this central signaling pathway by one signal (glucose depletion) interpreted by the cell in different ways.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3