Modeling traumatic brain injury combined with hemorrhagic shock in rats: Neurological assessment and PET imaging with 18F-fluorodeoxyglucaric acid

Author:

Awwad Hibah O.ORCID,Hedrick AndriaORCID,Mdzinarishvili Alex,Houson HaileyORCID,Standifer Kelly M.ORCID,Awasthi VibhuduttaORCID

Abstract

ABSTRACTTraumatic brain injury (TBI) is a major cause of death and disability worldwide. Hemorrhagic shock (HS) aggravates tissue injury and complicates TBI recovery. We studied the combined insult of mild TBI and HS and investigated the impact of varying loss of blood volume on neurologic deficit and brain lesion volume. A novel positron emission tomography (PET) technique was employed to monitor tissue injury. Male Sprague Dawley rats received mTBI by controlled cortical impact (CCI) followed by withdrawal of 0%, 30-40%, 45%, or 50% of blood (mTBI, mTBI+HS≤40%, mTBI+HS45%, and mTBI+HS50%, respectively). Neurological deficit (mNSS= 5.6, 7.6, and 12.3) and mortality (2/12, 2/6, and 7/12) were worse in mTBI+HS≤40%, mTBI+HS45%, and mTBI+HS50%, respectively than in mTBI alone rats (no death; mNSS=3.3). Histologic lesion size increased 3.5-fold in mTBI+HS50% compared to mTBI alone and the infarct-avid PET agent 18F-fluorodeoxyglucaric acid (FGA) proportionately detected tissue necrosis in mTBI+HS50% rats. Based on these results, we conclude that HS aggravates mTBI-induced neurological deficits, tissue injury and mortality. PET/18F-FGA as an imaging marker can detect the extent of injury in a non-invasive manner.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3