Provenance Attestation of Human Cells Using Physical Unclonable Functions

Author:

Li Yi,Bidmeshki Mohammad Mahdi,Kang Taek,Nowak Chance M.,Makris Yiorgos,Bleris Leonidas

Abstract

AbstractWe introduce a novel methodology, namely CRISPR-Engineered Attestation of Mammalian Cells using Physical Unclonable Functions (CREAM-PUFs), which can serve as the cornerstone for formally verifying transactions in human cell line distribution networks. A PUF is a physical entity which provides a measurable output that can be used as a unique and irreproducible identifier for the artifact wherein it is embedded. Popularized by the electronics industry, silicon PUFs leverage the inherent physical variations of semiconductor manufacturing to establish intrinsic security primitives for attesting integrated circuits. Owing to the stochastic nature of these variations and the multitude of steps involved, photo-lithographically manufactured silicon PUFs are impossible to reproduce (thus unclonable). Inspired by the success of silicon PUFs, we sought to exploit a combination of sequence-restricted barcodes and the inherent stochasticity of CRISPR-induced non-homologous end joining DNA error repair to create the first generation of genetic physical unclonable functions in three distinct human cells (HEK293, HCT116, and HeLa). We demonstrate that these CREAM-PUFs are robust (i.e., they repeatedly produce the same output), unique (i.e., they do not coincide with any other identically produced PUF), and unclonable (i.e., they are virtually impossible to replicate). Accordingly, CREAM-PUFs can serve as a foundational principle for establishing provenance attestation protocols for protecting intellectual property and confirming authenticity of engineered cell lines.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3