Toward a More Accurate 3D Atlas of C. elegans Neurons

Author:

Skuhersky MichaelORCID,Wu Tailin,Yemini EviatarORCID,Boyden Edward,Tegmark MaxORCID

Abstract

AbstractDetermining cell identity in volumetric images of tagged neuronal nuclei is an ongoing challenge in contemporary neuroscience. Frequently, cell identity is determined by aligning and matching tags to an “atlas” of labeled neuronal positions and other identifying characteristics. Previous analyses of such C. elegans datasets have been hampered by the limited accuracy of such atlases, especially for neurons present in the ventral nerve cord, and also by time-consuming manual elements of the alignment process. We present a novel automated alignment method for sparse and incomplete point clouds of the sort resulting from typical C. elegans fluorescence microscopy datasets. This method involves a tunable learning parameter and a kernel that enforces biologically realistic deformation. We also present a pipeline for creating alignment atlases from datasets of the recently developed NeuroPAL transgene. In combination, these advances allow us to label neurons in volumetric images with confidence much higher than previous methods. We release, to the best of our knowledge, the most complete C. elegans 3D positional neuron atlas, encapsulating positional variability derived from 7 animals, for the purposes of cell-type identity prediction for myriad applications (e.g., imaging neuronal activity, gene expression, and cell-fate).

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Altun ZF , Herndon LA , Wolkow CA , Crocker C , Lints R , Hall DH , WormAtlas, Neuronal Wiring; 2002-2021. https://www.wormatlas.org/neuronalwiring.html.

2. A probabilistic atlas for cell identification;arXiv preprint,2019

3. Graphical-model framework for automated annotation of cell identities in dense cellular images;Elife,2021

4. Choe Y , McCormick BH , Koh W. Network connectivity analysis on the temporally augmented C. elegans web: A pilot study. Soc Neurosci Abstr. 2004 01; 30.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3