Volumetric quantification of wound healing by machine learning and optical coherence tomography in adults with type 2 diabetes: the GC-SHEALD RCT

Author:

Wang Yinhai,Ajjan Ramzi,Freeman Adrian,Stewart Paul,Galdo Francesco Del,Tiganescu Ana

Abstract

AbstractType 2 diabetes mellitus is associated with impaired wound healing, which contributes substantially to patient morbidity and mortality. Glucocorticoid (stress hormone) excess is also known to delay wound repair. Optical coherence tomography (OCT) is an emerging tool for monitoring healing by “virtual biopsy”, but largely requires manual analysis, which is labour-intensive and restricts data volume processing. This limits the capability of OCT in clinical research.Using OCT data from the GC-SHEALD trial, we developed a novel machine learning algorithm for automated volumetric quantification of discrete morphological elements of wound healing (by 3mm punch biopsy) in patients with type 2 diabetes. This was able to differentiate between early / late granulation tissue, neo-epidermis and clot structural features and quantify their volumetric transition between day 2 and day 7 wounds. Using OCT, we were able to visualize differences in wound re-epithelialisation and re-modelling otherwise indistinguishable by gross wound morphology between these time points. Automated quantification of maximal early granulation tissue showed a strong correlation with corresponding (manual) GC-SHEALD data. Further, % re-epithelialisation was improved in patients treated with oral AZD4017, an inhibitor of systemic glucocorticoid-activating 11β-hydroxysteroid dehydrogenase type 1 enzyme action, with a similar trend in neo-epidermis volume.Through the combination of machine learning and OCT, we have developed a highly sensitive and reproducible method of automated volumetric quantification of wound healing. This novel approach could be further developed as a future clinical tool for the assessment of wound healing e.g. diabetic foot ulcers and pressure ulcers.Disclosure SummaryI certify that neither I nor my co-authors have a conflict of interest as described above that is relevant to the subject matter or materials included in this Work.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3