Plasmodium falciparum Calcium Dependent Protein Kinase 4 is critical for male gametogenesis and transmission to the mosquito vector

Author:

Kumar SudhirORCID,Haile Meseret T.,Hoopmann Michael R.ORCID,Tran Linh T.ORCID,Michaels Samantha A.ORCID,Morrone Seamus R.ORCID,Ojo Kayode K.ORCID,Reynolds Laura M.,Kusebauch UlrikeORCID,Vaughan Ashley M.ORCID,Moritz Robert L.ORCID,Kappe Stefan H.I.ORCID,Swearingen Kristian E.ORCID

Abstract

ABSTRACTGametocytes of the malaria parasite Plasmodium are taken up by the mosquito vector with an infectious blood meal, representing a critical stage for parasite transmission. Calcium dependent protein kinases (CDPKs) play key roles in calcium-mediated signaling across the complex life cycle of the parasite. We sought to understand their role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human-infective parasite Plasmodium falciparum CDPK4 in the parasite life cycle. P. falciparum cdpk4 parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk4 parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes. To understand the molecular underpinnings of this defect, we performed mass spectrometry-based phosphoproteomic analyses of wild type and Plasmodium falciparum cdpk4 late gametocyte stages, to identify key CDPK4-mediated phosphorylation events that may be important for the regulation of male gametogenesis. We further employed in vitro assays to identify these putative substrates of Plasmodium falciparum CDPK4. This indicated that CDPK4 regulates male gametogenesis by directly or indirectly controlling key essential events such as DNA replication, mRNA translation and cell motility. Taken together, our work demonstrates that PfCDPK4 is a central kinase that regulates exflagellation, and thereby is critical for parasite transmission to the mosquito vector.IMPORTANCETransmission of the malaria parasite to the mosquito vector is critical for the completion of the sexual stage of the parasite life cycle and is dependent on the release of male gametes from the gametocyte body inside the mosquito midgut. In the present study, we demonstrate that PfCDPK4 is critical for male gametogenesis and is involved in phosphorylation of proteins essential for male gamete emergence. Targeting PfCDPK4 and its substrates may provide insights into achieving effective malaria transmission-blocking strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3