The liverwort Marchantia polymorpha operates a depolarization-activated Slowpoke (SLO) K+ channel that recognises pH changes in the environment

Author:

Sussmilch Frances C.ORCID,Böhm JenniferORCID,Gessner Guido,Maierhofer TobiasORCID,Müller Thomas D.,Heinemann Stefan H.ORCID,Becker DirkORCID,Hedrich RainerORCID

Abstract

SUMMARYVoltage-dependent ion channels are a prerequisite for cellular excitability and electrical communication – important traits for multicellular organisms to thrive in a changeable terrestrial environment. Based on their presence in extant embryophytes and closely-related green algae, the first plants to survive on land likely possessed genes encoding channels with homology to large-conductance calcium-activated K+ channels (BK channels from the Slo family) in addition to primary voltage-gated potassium channels from the plant VG-type family (Shaker or Kv channels). While the function and gating of Shaker channels has been characterised in flowering plants, so far knowledge of BK channels has been limited to animal models. In humans, BK-mediated K+ efflux has a critical role in sperm motility and membrane polarisation to enable fertilisation. In the liverwort Marchantia polymorpha, the MpBK2a channel gene is most highly expressed in male reproductive tissue, suggesting that these channels may function in sexual reproduction. We characterised MpBK2a channels and found them to be strongly K+-selective, outward-rectifying, 80-pS channels capable of repolarising the membrane after stimulus-dependent depolarisation. In contrast to its animal counterpart, MpBK2a is insensitive to cytoplasmic Ca2+ variations but effectively gated by pH changes. Given that this plant BK channel is active even in the presence of trace amounts of external K+ and at low pH, the liverwort channel could have stabilised the membrane potential under stressful pre-historic conditions including nutrient-depleted and acid environments as early plant pioneers conquered land.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3