Actin force generation in vesicle formation: mechanistic insights from cryo-electron tomography

Author:

Serwas DanielORCID,Akamatsu MatthewORCID,Moayed Amir,Vegesna Karthik,Vasan Ritvik,Hill Jennifer M,Schöneberg JohannesORCID,Davies Karen M,Rangamani PadminiORCID,Drubin David GORCID

Abstract

SummaryActin assembly provides force for a multitude of cellular processes. Compared to actin assembly- based force production during cell migration, relatively little is understood about how actin assembly generates pulling forces for vesicle formation. Here, cryo-electron tomography revealed actin filament number, organization, and orientation during clathrin-mediated endocytosis in human cells, showing that force generation is robust despite variance in network organization. Actin dynamics simulations incorporating a measured branch angle indicate that sufficient force to drive membrane internalization is generated through polymerization, and that assembly is triggered from ∼4 founding “mother” filaments, consistent with tomography data. Hip1R actin filament anchoring points are present along the entire endocytic invagination, where simulations show that it is key to pulling force generation, and along the neck, where it targets filament growth and makes internalization more robust. Actin cytoskeleton organization described here allowed direct translation of structure to mechanism with broad implications for other actin-driven processes.Highlights-Filament anchorage points are key to pulling force generation and efficiency.-Native state description of CME-associated actin force-producing networks.-Branched actin filament assembly is triggered from multiple mother filaments.-Actin force production is robust despite considerable network variability.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3