Functional-Hybrid Modeling through automated adaptive symbolic regression for interpretable mathematical expressions

Author:

Narayanan Harini,Cruz Bournazou Mariano Nicolas,Guillén-Gosálbez Gonzalo,Butté Alessandro

Abstract

AbstractMathematical models used for the representation of (bio)-chemical processes can be grouped into two broad paradigms: white-box or mechanistic models, completely based on knowledge or black-box data-driven models based on patterns observed in data. However, in the past two-decade, hybrid modeling that explores the synergy between the two paradigms has emerged as a pragmatic compromise. The data-driven part of these have been largely based on conventional machine learning algorithm (e.g., artificial neural network, support vector regression), which prevents interpretability of the finally learnt model by the domain-experts. In this work we present a novel hybrid modeling framework, the Functional-Hybrid model, that uses the ranked domain-specific functional beliefs together with symbolic regression to develop dynamic models. We demonstrate the successful implementation of these hybrid models for four benchmark systems and a microbial fermentation reactor, all of which are systems of (bio)chemical relevance. We also demonstrate that compared to a similar implementation with the conventional ANN, the performance of Functional-Hybrid model is at least two times better in interpolation and extrapolation. Additionally, the proposed framework can learn the dynamics in 50% lower number of experiments. This improved performance can be attributed to the structure imposed by the functional transformations introduced in the Functional-Hybrid model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3