Multi-Level DBSCAN: A Hierarchical Density-Based Clustering Method for Analyzing Molecular Dynamics Simulation Trajectories

Author:

Liu Song,Cao Siqin,Suarez Michael,Goonetillek Eshani C.,Huang XuhuiORCID

Abstract

AbstractMolecular Dynamic (MD) simulations have been extensively used as a powerful tool to investigate dynamics of biological molecules in recent decades. Generally, MD simulations generate high-dimensional data that is very hard to visualize and comprehend. As a result, clustering algorithms have been commonly used to reduce the dimensionality of MD data with the key benefit being their ability to reduce the dimensionality of MD data without prior knowledge of structural details or dynamic mechanisms. In this paper, we propose a new algorithm, the Multi-Level Density-Based Spatial Clustering of Applications with Noise (ML-DBSCAN), which combines the clustering results at different resolution of density levels to obtain the hierarchical structure of the free energy landscape and the metastable state assignment. At relatively low resolutions, the ML-DBSCAN can efficiently detect high population regions that contain all metastable states, while at higher resolutions, the ML-DBSCAN can find all metastable states and structural details of the free energy landscape. We demonstrate the powerfulness of the ML-DBSCAN in generating metastable states with a particle moving in a Mexican hat-like potential, and four peptide and protein examples are used to demonstrate how hierarchical structures of free energy landscapes can be found. Furthermore, we developed a GPU implementation of the ML-DBSCAN, which allows the algorithm to handle larger MD datasets and be up to two orders of magnitude faster than the CPU implementation. We demonstrate the power of the ML-DBSCAN on MD simulation datasets of five systems: a 2D-potential, alanine dipeptide, β-hairpin Tryptophan Zipper 2 (Trpzip2), Human Islet Amyloid Polypeptide (hIAPP), and Maltose Binding Protein (MBP). Our code is available at https://github.com/liusong299/ML-DBSCAN.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3