Depression predicts chronic pain interference in racially-diverse, low-income patients

Author:

Nephew Benjamin C.,Rodriguez Angela C. Incollingo,Melican Veronica,Polcari Justin J.,Nippert Kathryn E.,Rashkovskii Mikhail,Linnell Lilly-Beth,Hu Ruofan,Ruiz Carolina,King Jean A.,Gardiner Paula

Abstract

ABSTRACTBackgroundChronic pain is one of the most common reasons adults seek medical care in the US, with estimates of prevalence ranging from 11% to 40%. Mindfulness meditation has been associated with significant improvements in pain, depression, physical and mental health, sleep, and overall quality of life. Group medical visits are increasingly common and are effective at treating myriad illnesses including chronic pain. Integrative Medical Group Visits (IMGV) combine mindfulness techniques, evidence based integrative medicine, and medical group visits and can be used as adjuncts to medications, particularly in diverse underserved populations with limited access to non-pharmacological therapies.Objective and DesignThe objective of the present study was to use a blended analytical approach of machine learning and regression analyses to evaluate the potential relationship between depression and chronic pain in data from a randomized clinical trial of IMGV in socially diverse, low income patients suffering from chronic pain and depression.MethodsThis approach used machine learning to assess the predictive relationship between depression and pain and identify and select key mediators, which were then assessed with regression analyses. It was hypothesized that depression would predict the pain outcomes of average pain, pain severity, and pain interference.ResultsOur analyses identified and characterized a predictive relationship between depression and chronic pain interference. This prediction was mediated by high perceived stress, low pain self-efficacy, and poor sleep quality, potential targets for attenuating the adverse effects of depression on functional outcomes.ConclusionsIn the context of the associated clinical trial and similar interventions, these insights may inform future treatment optimization, targeting, and application efforts in racially diverse, low income populations, demographics often neglected in studies of chronic pain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3