Abstract
AbstractNew treatments for patients with advanced or metastatic pancreatic cancers are urgently needed due to their resistance to all current therapies. Current studies focus on alternative treatment approaches that target or normalize the abnormal microenvironment of pancreatic tumors, which among others, is responsible for elevated mechanical stress in the tumor interior. Nevertheless, the underlying mechanisms by which mechanical stress regulates pancreatic cancer metastatic potential remain elusive. Herein, we used a large-scale proteomic assay to profile mechanical stress-induced signaling cascades that drive the motility of pancreatic cancer cells. Proteomic analysis, together with selective protein inhibition and siRNA treatments, revealed that mechanical stress enhances cell migration through activation of the p38 MAPK/HSP27 and JNK/c-Jun signaling axes, and activation of the actin cytoskeleton remodelers: Rac1, cdc42, and Myosin II. Our results highlight targeting aberrant signaling in cancer cells that are adapted to the mechanical tumor microenvironment as a novel approach to effectively limit pancreatic cancer cell migration.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. mTOR Signaling Components in Tumor Mechanobiology;International Journal of Molecular Sciences;2022-02-05