The Genetic Architecture of Strawberry Yield and Fruit Quality Traits

Author:

Cockerton Helen M.,Karlström Amanda,Johnson Abigail W.,Li Bo,Stavridou Eleftheria,Hopson Katie J.,Whitehouse Adam B.,Harrison Richard J.ORCID

Abstract

AbstractOver the last two centuries breeders have drastically modified the fruit quality of strawberries through artificial selection. However, there remains significant variation in quality across germplasm with scope for further improvements to be made. We report extensive phenotyping of fruit quality and yield traits in a multi-parental strawberry population to allow genomic prediction and QTL identification, thereby enabling the description of genetic architecture to inform the efficacy of implementing advanced breeding strategies.A trade-off was observed between two essential traits: sugar content and class one yield. This result highlights an established dilemma for strawberry breeders and a need to uncouple the relationship, particularly under June-bearing, protected production systems comparable to this study. A large effect QTL was associated with perceived acidity and pH whereas multiple loci were associated with firmness, we therefore recommend the implementation of both MAS and genomic prediction to capture the observed variation respectively.Ultimately, our results suggest that the best method to improve strawberry yield is through selecting parental lines based upon the number of marketable fruit produced per plant. Strawberry number metrics were less influenced by environmental fluctuations and had a larger additive genetic component when compared to mass traits. As such, selecting using “number” traits should lead to faster genetic gain. Finally, we identify a large effect locus associated with an increase in class one fruit.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3