In-depth sequence-function characterization reveals multiple paths to enhance phenylalanine ammonia-lyase (PAL) activity

Author:

Trivedi Vikas D.,Chappell Todd C.,Krishna Naveen B.,Shetty Anuj,Sigamani Gladstone G.,Mohan Karishma,Ramesh Athreya,R. Pravin Kumar,Nair Nikhil U.ORCID

Abstract

ABSTRACTPhenylalanine ammonia-lyases (PALs) deaminate L-phenylalanine to trans-cinnamic acid and ammonium and have idespread application in chemo-enzymatic synthesis, agriculture, and medicine. In particular, the PAL from Anabaena variabilis (Trichormus variabilis) has garnered significant attention as the active ingredient in Pegvaliase®, the only FDA-approved drug treating classical phenylketonuria (PKU). Although an extensive body of literature exists on structure, substrate-specificity, and catalytic mechanism, protein-wide sequence determinants of function remain unknown, which limits the ability to rationally engineer these enzymes. Previously, we developed a high-throughput screen (HTS) for PAL, and here, we leverage it to create a detailed sequence-function landscape of PAL by performing deep mutational scanning (DMS). Our method revealed 79 hotspots that affected a positive change in enzyme fitness, many of which have not been reported previously. Using fitness values and structure-function analysis, we picked a subset of residues for comprehensive single- and multi-site saturation mutagenesis to improve the catalytic activity of PAL and identified combinations of mutations that led to improvement in reaction kinetics in cell-free and cellular contexts. To understand the mechanistic role of the most beneficial mutations, we performed QM/MM and MD and observed that different mutants confer improved catalytic activity via different mechanisms, including stabilizing first transition and intermediate states and improving substrate diffusion into the active site, and decreased product inhibition. Thus, this work provides a comprehensive sequence-function relationship for PAL, identifies positions that improve PAL activity when mutated and assesses their mechanisms of action.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3