Harnessing methylotrophs as a bacterial platform to reduce adverse effects of the use of the heavy lanthanide gadolinium in magnetic resonance imaging

Author:

Good Nathan M.ORCID,Lee Harvey,Hawker Emily R.,Gilad Assaf A.ORCID,Martinez-Gomez N. CeciliaORCID

Abstract

ABSTRACTGadolinium is a key component of magnetic resonance imaging contrast agents that are critical tools for enhanced detection and diagnosis of tissue and vascular abnormalities. Untargeted post-injection deposition of gadolinium in vivo, and association with diseases like nephrogenic systemic fibrosis, has alerted regulatory agencies to re-evaluate their widespread use and generated calls for safer gadolinium-based contrast agents (GBCAs). Increasing anthropogenic gadolinium in surface water has also raised concerns of potential bioaccumulation in plants and animals. Methylotrophic bacteria can acquire, transport, store and use light lanthanides as part of a cofactor complex with pyrroloquinoline quinone (PQQ), an essential component of XoxF-type methanol dehydrogenases (MDHs), a critical enzyme for methylotrophic growth with methanol. We report robust gadolinium-dependent methanol growth of a genetic variant of Methylorubrum extorquens AM1, named evo-HLn, for “evolved for heavy lanthanides”. Genetic adaptation of evo-HLn resulted in increased xox1 promoter and XoxF MDH activities, transport and storage of Gd3+, and augmented biosynthesis of PQQ. Gadolinium-grown cells exhibited a shorter T1 relaxation time compared to cells with lanthanum or no lanthanide when analyzed by MRI. In addition, evo-HLn was able to grow on methanol using the GBCA Gd-DTPA as the sole gadolinium source, showing the potential of this strain for the development of novel GBCAs and gadolinium recovery from medical waste and/or wastewater.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3