Emergent properties of coupled bistable switches

Author:

Hari KishoreORCID,Harlapur Pradyumna,Gopalan Aditi,Ullanat Varun,Duddu Atchuta Srinivas,Jolly Mohit Kumar

Abstract

AbstractUnderstanding the dynamical hallmarks of network motifs is one of the fundamental aspects of systems biology. Positive feedback loops constituting one or two nodes – self-activation, toggle switch, and double activation loops – are commonly observed motifs in regulatory networks underlying cell-fate decision systems. Their individual dynamics are well-studied; they are capable of exhibiting bistability. However, studies across various biological systems suggest that such positive feedback loops are interconnected with one another, and design principles of coupled bistable motifs remain unclear. We wanted to ask what happens to bistability or multistability traits and the phenotypic space (collection of phenotypes exhibited by a system) due to the couplings. In this study, we explore a set of such interactions using discrete and continuous simulation methods. Our results suggest that couplings that do not connect the bistable switches in a way that contradicts the connections within individual bistable switches lead to a steady state space that is strictly a subset of the set of possible combinations of steady states of bistable switches. Furthermore, adding direct and indirect self-activations to these coupled networks can increase the frequency of multistability. Thus, our observations reveal specific dynamical traits exhibited by various coupled bistable motifs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3