Oncofetal protein CRIPTO regulates wound healing and fibrogenesis in regenerating liver and is associated with the initial stages of cardiac fibrosis

Author:

Karkampouna S.ORCID,van der Helm D.,van Hoek B.,Verspaget H.W.,Goumans M.J.,Coenraad M.J.,Kruithof B.P.T.,Kruithof-de Julio M.

Abstract

AbstractBackgroundOncofetal protein, Cripto, is silenced during postnatal life and often re-expressed in different neoplastic processes. In the present study we investigated the potential role of Cripto in hepatic and cardiac fibrosis. In this study, the aim was to explore whether Cripto is expressed during liver fibrogenesis and whether this is related to the disease severity and pathogenesis of fibrogenesis. Furthermore, we aimed to identify the impact of Cripto expression on fibrogenesis in organs with high versus low regenerative capacity, represented by murine liver fibrogenesis and adult murine heart fibrogenesisMethodsCirculating CRIPTO levels were measured in plasma samples of patients with cirrhosis registered at the waitlist for liver transplantation (LT) and one year after LT. The expression of Cripto and fibrotic markers (aSMA, collagen I) were determined in human liver tissues of patients with cirrhosis (on a basis of viral hepatitis or alcoholic disease), in cardiac tissue samples of patients with end-stage heart failure and of mice with experimental liver and heart fibrosis using immuno-histochemical stainings and qPCR. Mouse models with experimental chronic liver fibrosis, induced with multiple shots of carbon tetrachloride (CCl4) and acute liver fibrosis (one shot of CCl4) were evaluated for Cripto expression and fibrotic markers. Cripto was overexpressed in vivo (Adenoviral delivery) or functionally sequestered by ALK4Fc ligand trap in the acute liver fibrosis mouse model. Murine heart tissues were evaluated for Cripto and fibrotic markers, in three models of heart injury; following myocardial infarction, pressure overload and ex vivo induced fibrosis.ResultsPatients with end-stage liver cirrhosis showed elevated Cripto levels in plasma, which had decreased one year after LT. Cripto expression was observed in fibrotic tissues of patients with end-stage liver cirrhosis and in patients with heart failure. The expression of Cripto in the liver was found specifically in the hepatocytes and was positively correlated with the Model for End-stage Liver Disease (MELD) score for end-stage liver disease. Cripto expression in the samples of cardiac fibrosis was limited and mostly observed in the interstitial cells. In the chronic and acute mouse models of liver fibrosis, Cripto-positve cells were observed in damaged liver areas around the central vein, which preceded the expression of aSMA-positive stellate cells, i.e. mediators of fibrosis. Whereas in the chronic mouse models the fibrosis and Cripto expression was still present after 11 weeks, in the acute model the liver regenerated and the fibrosis and Cripto expression resolved. In vivo overexpression of Cripto in this model, led to an increase in fibrotic markers while blockage of Cripto secreted function inhibited the extend of fibrotic areas and marker expression (αSMA, Collagen type I and III) and induced higher proliferation of residual healthy hepatocytes. Cripto expression was also upregulated in several mouse models of cardiac fibrosis. During myocardial infarction Cripto is upregulated initially in cardiac interstitial cells, followed by expression in αSMA-positive myofibroblasts throughout the infarct area. After the scar formation, Cripto expression decreased concomitantly with the aSMA expression. Temporal expression of Cripto in αSMA-positive myofibroblasts was also observed surrounding the coronary arteries in the pressure overload model of cardiac fibrosis. Furthermore, Cripto expression was upregulated in interstitial myofibroblasts in hearts cultured in an ex vivo model for cardiac fibrosis.ConclusionOur results are indicative for a functional role of Cripto in induction of fibrogenesis and potential applications in antifibrotic treatments and stimulation of tissue regeneration.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Whence CRIPTO: The Reemergence of an Oncofetal Factor in ‘Wounds’ That Fail to Heal;International Journal of Molecular Sciences;2021-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3