Adaptable Automated Interpretation of Rapid Diagnostic Tests Using Few-Shot Learning

Author:

Arumugam Siddarth,Ma Jiawei,Macar Uzay,Han Guangxing,McAulay Kathrine,Ingram Darrell,Ying Alex,Colburn David A. M.,Stanciu Robert,Grys Thomas,Chang Shih-Fu,Sia Samuel K.

Abstract

AbstractPoint-of-care lateral-flow assays (LFAs) are becomingly increasingly prevalent for diagnosing individual patient disease status and surveying population disease prevalence in a timely, scalable, and cost-effective manner, but a central challenge is to assure correct assay operation and results interpretation as the assays are manually performed in decentralized settings. A smartphone-based software can automate interpretation of an LFA kit, but such algorithms typically require a very large number of images of assays tested with validated specimens, which is challenging to collect for different assay kits, especially for those released during a pandemic. Here, we present an approach – AutoAdapt LFA – that uses few-shot learning, an approach used in other applications such as computer vision and robotics, for accurate and automated interpretation of LFA kits that requires a small number of validated images for training. The approach consists of three components: extraction of membrane and zone areas from an image of the LFA kit, a self-supervised encoder that employs a feature extractor trained with edge-filtered patterns, and few-shot adaptation that enables generalization to new kits using limited validated images. From a base model pre-trained on a commercial LFA kit, we demonstrated the ability of adapted models to interpret results from five new COVID-19 LFA kits (three detecting antigens for diagnosing active infection, and two detecting antibodies for diagnosing past infection). Specifically, using just 10 to 20 images of each new kit, we achieved accuracies of 99% to 100% for each kit. The server-hosted algorithm has an execution time of approximately 4 seconds, which can potentially enable quality assurance and linkage to care for users operating new LFAs in decentralized settings.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats;A literature survey,2009

2. Behavior;Home testing past, present and future: lessons learned and implications for HIV home tests,2014

3. Lateral flow assays

4. Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection;Sensors-Basel,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3