Abstract
ABSTRACTPertussis is a respiratory disease caused by the Gram-negative pathogen, Bordetella pertussis (Bp). The transition from a whole cell pertussis vaccine (wP; DTP) to an acellular pertussis vaccine (aP; DTaP; Tdap) correlates with an increase in pertussis cases, despite widespread vaccine implementation and coverage, and it is now appreciated that the protection provided by aP rapidly wanes. To recapitulate the localized immunity observed from natural infection, mucosal vaccination with aP was explored using the coughing rat model of pertussis. Immunity induced by both oral gavage (OG) and intranasal (IN) vaccination of aP in Bp challenged rats over a nine-day infection was compared to intramuscular (IM)-wP and IM-aP immunized rats that were used as positive controls as IM immunization is the current route for wP and aP vaccination. Our data demonstrate that both IN and OG immunization of aP resulted in production of anti-Bp IgG antibody titers similar to IM-wP and IM-aP vaccinated controls post-challenge. IN-aP also induced anti-Bp IgA antibodies in the nasal cavity. Immunization with IM-wP, IM-aP, IN-aP, and OG-aP immunization protected against Bp induced cough, while OG-aP immunization did not protect against respiratory distress. Mucosal immunization (IN-aP and OG-aP) also protected against acute inflammation and decreased bacterial burden in the lung compared to mock vaccinated challenge (MVC) rats. The data presented in this study suggests that mucosal vaccination with aP can induce a mucosal immune response and provide protection against Bp challenge.
Publisher
Cold Spring Harbor Laboratory