Abstract
AbstractIn most mammals, the primary teeth develop in utero and the cells capable of contributing to hard surface regeneration are lost before tooth eruption. These cells differentiate through a series of reciprocal induction steps between the epithelium and mesenchyme, initially orchestrated by an epithelial signaling center called the enamel knot. While the factors secreted by this structure are of interest to the dental regeneration and development communities, its small size makes it difficult to isolate for analysis. Here we describe our work to identify the enamel knot from whole E14 molars using publicly available scRNA-seq data. We identified 335 genes differentially expressed in the enamel knot compared to the surrounding tissues, including known enamel knot marker genes. We validated expression of the most highly enriched enamel knot marker genes and identified 42 novel marker genes of the enamel knot which provide excellent targets for future dental regeneration investigations.
Publisher
Cold Spring Harbor Laboratory