Bayesian mapping of the striatal microcircuit reveals robust asymmetries in the probabilities and distances of connections

Author:

Cinotti FrançoisORCID,Humphries Mark D.ORCID

Abstract

ABSTRACTThe striatum’s complex microcircuit is made by connections within and between its D1- and D2-receptor expressing projection neurons and at least five species of interneuron. Precise knowledge of this circuit is likely essential to understanding striatum’s functional roles and its dysfunction in a wide range of movement and cognitive disorders. We introduce here a Bayesian approach to mapping neuron connectivity using intracellular recording data, which lets us simultaneously evaluate the probability of connection between neuron types, the strength of evidence for it, and its dependence on distance. Using it to synthesise a complete map of the mouse striatum, we find strong evidence for two asymmetries: a selective asymmetry of projection neuron connections, with D2 neurons connecting twice as densely to other projection neurons than do D1 neurons, but neither subtype preferentially connecting to another; and a length-scale asymmetry, with interneuron connection probabilities remaining non-negligible at more than twice the distance of projection neuron connections. We further show our Bayesian approach can evaluate evidence for wiring changes, using data from the developing striatum and a mouse model of Huntington’s disease. By quantifying the uncertainty in our knowledge of the microcircuit, our approach reveals a wide range of potential striatal wiring diagrams consistent with current data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3