Brain imaging before and after COVID-19 in UK Biobank

Author:

Douaud Gwenaëlle,Lee Soojin,Alfaro-Almagro Fidel,Arthofer Christoph,Wang ChaoyueORCID,McCarthy Paul,Lange FrederikORCID,Andersson Jesper L.R.,Griffanti LudovicaORCID,Duff Eugene,Jbabdi Saad,Taschler Bernd,Winkler Anderson M.ORCID,Nichols Thomas E.,Collins Rory,Matthews Paul M.ORCID,Allen Naomi,Miller Karla L.,Smith Stephen M.

Abstract

AbstractThere is strong evidence for brain-related pathologies in COVID-19, some of which could be a consequence of viral neurotropism, or of neuroinflammation following viral infection. Most brain imaging studies have focused on qualitative, gross pathology in moderate to severe cases, most typically carried out on hospitalised patients. It remains unknown however whether the impact of SARS-CoV-2 infection can be detected in milder cases, in a quantitative and automated manner, and whether this can reveal possible mechanisms for the spread of the disease. UK Biobank scanned over 40,000 participants before the start of the COVID-19 pandemic, making it possible in 2021 to invite back hundreds of previously-imaged participants for a second imaging visit. Here, we studied the possible brain changes associated with the coronavirus infection using multimodal MRI data from 785 adult participants (aged 51–81) from the UK Biobank COVID-19 re-imaging study, including 401 adult participants who tested positive for SARS-CoV-2 infection between their two scans. We used structural, diffusion and functional brain scans from before and after infection, to compare longitudinal changes between these 401 SARS-CoV-2 cases and 384 controls who had either tested negative to rapid antibody testing or had no COVID-19 medical and public health record, and who were matched to the cases for age, sex, ethnicity and interval between scans. The controls and cases did not differ in blood pressure, body mass index, diabetes diagnosis, smoking, alcohol consumption, or socio-economic status. Using both hypothesis-driven and exploratory approaches, with false discovery rate multiple comparison correction, we identified respectively 68 and 67 significant longitudinal effects associated with SARS-CoV-2 infection in the brain, including, on average: (i) a more pronounced reduction in grey matter thickness and contrast in the lateral orbitofrontal cortex (min P=1.7×10-4, r=-0.14) and parahippocampal gyrus (min P=2.7×10-4, r=-0.13), (ii) a relative increase of diffusion indices, a marker of tissue damage, in the regions of the brain functionally-connected to the piriform cortex, anterior olfactory nucleus and olfactory tubercle (min P=2.2×10-5, r=0.16), and (iii) greater reduction in global measures of brain size and increase in cerebrospinal fluid volume suggesting an additional diffuse atrophy in the infected participants (min P=4.0×10-6, r=-0.17). When looking over the entire cortical surface, these grey matter thickness results covered the parahippocampal gyrus and the lateral orbitofrontal cortex, and extended to the anterior insula and anterior cingulate cortex, supramarginal gyrus and temporal pole. The increase of a diffusion index (mean diffusivity) meanwhile could be seen voxel-wise mainly in the medial and lateral orbitofrontal cortex, the anterior insula, the anterior cingulate cortex and the amygdala. These results were not altered after excluding cases who had been hospitalised. We further compared hospitalised (n=15) and non-hospitalised (n=386) infected participants, resulting in similar findings to the larger cases vs control group comparison, with, in addition, a marked reduction of grey matter thickness in fronto-parietal and temporal regions (all FDR-significant, min P=4.0×10-6). The 401 SARS-CoV-2 infected participants also showed larger cognitive decline between the two timepoints in the Trail Making Test compared with the controls (both FDR-significant, min P=1.0×10-4, r=0.17; and still FDR-significant after excluding the hospitalised patients: min P=1.0×10-4, r=0.17), with the duration taken to complete the alphanumeric trail correlating post hoc with the cognitive and olfactory-related crus II of the cerebellum (FDR-significant, P=2.0×10-3, r=-0.19), which was also found significantly atrophic in the SARS-CoV-2 participants (FDR-significant, P=6.1×10-5, r=-0.14). Our findings thus relate to longitudinal abnormalities in limbic cortical areas with direct neuronal connectivity to the primary olfactory system. Unlike in post hoc cross-sectional studies, the availability of pre- infection imaging data mitigates to some extent the issue of pre-existing risk factors or clinical conditions being misinterpreted as disease effects. We were therefore able to demonstrate that the regions of the brain that showed longitudinal differences post-infection did not already show any difference between (future) cases and controls in their initial, pre-infection scans. These brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease — or of the virus itself — via olfactory pathways (a possible entry point of the virus to the central nervous system being via the olfactory mucosa), or of neuroinflammatory events due to the infection, or of the loss of sensory input due to anosmia. Whether this deleterious impact can be partially reversed, for instance after improvement of the hyposmic symptoms, or whether these are effects that will persist in the long term, remains to be investigated with additional follow up.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3