Pharmacologic and genetic inhibition of cholesterol esterification reduces tumour burden: a pan-cancer systematic review and meta-analysis of preclinical models

Author:

Websdale Alex,Kiew Yi,Chalmers Philip,Chen Xinyu,Cioccoloni Giorgia,Hughes Thomas A,Luo Xinyu,Mwarzi Rufaro,Poirot MarcORCID,Røberg-Larsen Hanne,Wu Ruoying,Xu Mengfan,Zulyniak Michael A.,Thorne James LORCID

Abstract

AbstractCholesterol esterification proteins Sterol-O acyltransferases (SOAT) 1 and 2 are emerging prognostic markers in many cancers. These enzymes utilise fatty acids conjugated to coenzyme A to esterify cholesterol. Cholesterol esterification is tightly regulated and enables formation of lipid droplets that act as storage organelles for lipid soluble vitamins and minerals, and as cholesterol reservoirs. In cancer, this provides rapid access to cholesterol to maintain continual synthesis of the plasma membrane. In this systematic review and meta-analysis, we summarise the current depth of understanding of the role of this metabolic pathway in pan-cancer development. A systematic search of PubMed, Scopus, and Web of Science for preclinical studies identified eight studies where cholesteryl ester concentrations were compared between tumour and adjacent-normal tissue, and 24 studies where cholesterol esterification was blocked by pharmacological or genetic approaches. Tumour tissue had a significantly greater concentration of cholesteryl esters than non-tumour tissue (p<0.0001). Pharmacological or genetic inhibition of SOAT was associated with significantly smaller tumours of all types (p≤0.002). SOAT inhibition increased tumour apoptosis (p=0.007), CD8+ lymphocyte infiltration and cytotoxicity (p≤0.05), and reduced proliferation (p=0.0003) and metastasis (p<0.0001). Significant risk of publication bias was found and may have contributed to a 32% overestimation of the meta-analysed effect size was overestimated. Avasimibe, the most frequently used SOAT inhibitor, was effective at doses equivalent to those previously reported to be safe and tolerable in humans. This work indicates that SOAT inhibition should be explored in clinical trials as an adjunct to existing anti-neoplastic agents.

Publisher

Cold Spring Harbor Laboratory

Reference109 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3