Improved SNV discovery in barcode-stratified scRNA-seq alignments

Author:

Prashant NM,Liu Hongyu,Dillard Christian,Ibeawuchi Helen,Alsaeedy Turkey,Chan Kwan Hang,Horvath Anelia

Abstract

AbstractSingle cell SNV analysis is an emerging and promising strategy to connect cell-level genetic variation to cell phenotypes. At the present, SNV detection from 10x Genomics scRNA-seq data is typically performed on the pooled sequencing reads across all cells in a sample. Here, we assess the gain of information of SNV assessments from individual cell scRNA-seq data, where the alignments are split by barcode prior to the variant call. For our analyses we use publicly available sequencing data on the human breast cancer cell line MCF7 cell line generated at consequent time-points during anti-cancer treatment. We analyzed SNV calls by three popular variant callers – GATK, Strelka2 and Mu-tect2, in combination with a method for cell-level tabulation of the sequencing read counts bearing SNV alleles – SCReadCounts. Our analysis shows that variant calls on individual cell alignments identify at least two-fold higher number of SNVs as compared to the pooled scRNA-seq. We demonstrate that scSNVs exclusively called in the single cell alignments (scSNVs) are substantially enriched in novel genetic variants and in coding functional annotations, in particular, stop-codon and missense substitutions. Furthermore, we find that the expression of some scSNVs correlates with the expression of their harbouring gene (cis-scReQTLs).Overall, our study indicates an immense potential of SNV calls from individual cell scRNA-seq data and emphasizes on the need of cell-level variant detection approaches and tools. Given the growing accumulation of scRNA-seq datasets, cell-level variant assessments are likely to significantly contribute to the understanding of the cellular heterogeneity and the relationship between genetics variants and functional phenotypes. In addition, cell-level variant assessments from scRNA-seq can be highly informative in cancer where they can help elucidate somatic mutations evolution and functionality.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3