Benchmarking UMI-based single cell RNA-sequencing preprocessing workflows

Author:

You YueORCID,Tian Luyi,Su Shian,Dong Xueyi,Jabbari Jafar S,Hickey Peter F,Ritchie Matthew E

Abstract

Single-cell RNA sequencing (scRNA-seq) technologies and associated analysis methods have undergone rapid development in recent years. This includes methods for data preprocessing, which assign sequencing reads to genes to create count matrices for downstream analysis. Several packaged preprocessing workflows have been developed that aim to provide users with convenient tools for handling this process. How different preprocessing workflows compare to one another and influence downstream analysis has been less well studied.Here, we systematically benchmark the performance of 9 end-to-end preprocessing workflows (Cell Ranger, Optimus, salmon alevin, kallisto bustools, dropSeqPipe, scPipe, zUMIs, celseq2 and scruff) using datasets with varying levels of biological complexity generated on the CEL-Seq2 and 10x Chromium platforms. We compare these workflows in terms of their quantification properties directly and their impact on normalization and clustering by evaluating the performance of different method combinations. We find that lowly expressed genes are discordant between workflows and observe that some workflows have systematic biases towards particular classes of genomics features. While the scRNA-seq preprocessing workflows compared varied in their detection and quantification of genes across datasets, after downstream analysis with performant normalization and clustering methods, almost all combinations produced clustering results that agreed well with the known cell type labels that provided the ground truth in our analysis.In summary, the choice of preprocessing method was found to be less influential than other steps in the scRNA-seq analysis process. Our study comprehensively compares common scRNA-seq preprocessing workflows and summarizes their characteristics to guide workflow users.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3