Annealing synchronizes the 70S ribosome into a minimum-energy conformation

Author:

Chu Xiaofeng,Su Xin,Liu Mingdong,Li Li,Li Tianhao,Qin Yicheng,Lu Guoliang,Qi Lei,Liu Yunhui,Lin Jinzhong,Shen Qing-TaoORCID

Abstract

AbstractResearchers commonly anneal metals, alloys, and semiconductors to repair defects and improve microstructures via recrystallization. Theoretical studies indicate simulated annealing on biological macromolecules helps predict the final structures with minimum free energy. Experimental validation of this homogenizing effect and further exploration of its applications are fascinating scientific questions that remain elusive. Here, we chose the apo-state 70S ribosome from Escherichia coli as a model, wherein the 30S subunit undergoes a thermally driven inter-subunit rotation and exhibits substantial structural flexibility as well as distinct free energy. We experimentally demonstrate that annealing at a fast cooling rate enhances the 70S ribosome homogeneity and improves local resolution on the 30S subunit. After annealing, the 70S ribosome is in a nonrotated state with respect to corresponding intermediate structures in unannealed or heated ribosomes, and exhibits a minimum energy in the free energy landscape. One can readily crystallize these minimum-energy ribosomes, which have great potential for synchronizing proteins on a single-molecule level. Our experimental results are consistent with theoretical analysis on the temperature-dependent Boltzmann distribution, and offer a facile yet robust approach to enhance protein stability, which is ideal for high-resolution cryogenic electron microscopy. Beyond structure determination, annealing can be extended to study protein folding and explore conformational and energy landscape.Significance statementIn metallurgy, annealing heats a metal or alloy to a predetermined temperature, holding for a certain time, and then cooling to room temperature to change the physical and sometimes also the chemical properties of the material. Researchers introduce the similar concept as simulated annealing to predict minimum-energy conformations of biological macromolecules. In this work, we experimentally verify that annealing at a fast cooling rate can synchronize the 70S ribosome into a nonrotated state with a minimum energy in the free energy landscape. Our results not only offer a facile yet robust approach to stabilize proteins for high-resolution structural analysis, but also contribute to the understanding of protein folding and temperature adaptation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3