Abstract
ABSTRACTA considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean’s interior, and under way is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll a and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn), were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by Flavobacteriales, Cellvibrionales and Synechococcales at 2-25 m and a dominance of peptidase transcription by Alteromonadales and Rhodobacterales from 50 m and down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporters by Thaumarchaeota at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO2-fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine DOM pool and nutrients across depths emphasizes the importance of different microbial foraging mechanisms across spatiotemporal scales for shaping biogeochemical cycles.IMPORTANCEIt is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here we used metatranscriptomics analyses to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献