Hyperactive WNT/CTNNB1 signaling induces a competing cell proliferation and epidermal differentiation response in the mouse mammary epithelium

Author:

Mourao LarissaORCID,Zeeman Amber L.,Wiese Katrin E.,Bongaarts AnikaORCID,Oudejans Lieve L.ORCID,Martinez Isabel Mora,van de Grift Yorick B.C.ORCID,Jonkers JosORCID,van Amerongen RenéeORCID

Abstract

ABSTRACTIn the past forty years, the WNT/CTNNB1 signaling pathway has emerged as a key player in mammary gland development and homeostasis. While also evidently involved in breast cancer, much unclarity continues to surround its precise role in mammary tumor formation and progression. This is largely due to the fact that the specific and direct effects of hyperactive WNT/CTNNB1 signaling on the mammary epithelium remain unknown. Here we use a primary mouse mammary organoid culture system to close this fundamental knowledge gap. We show that hyperactive WNT/CTNNB1 signaling induces competing cell proliferation and differentiation responses. While proliferation is dominant at lower levels of WNT/CTNNB1 signaling activity, higher levels cause reprogramming towards an epidermal cell fate. We show that this involves de novo activation of the epidermal differentiation cluster (EDC) locus and we identify master regulatory transcription factors that likely control the process. This is the first time that the molecular and cellular dose-response effects of WNT/CTNNB1 signaling in the mammary epithelium have been dissected in such detail. Our analyses reveal that the mammary epithelium is exquisitely sensitive to small changes in WNT/CTNNB1 signaling and offer a mechanistic explanation for the squamous differentiation that is observed in some WNT/CTNNB1 driven tumors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3