Rapid Characterization of Human Serum Albumin Binding for Per- And Polyfluoroalkyl Substances Using Differential Scanning Fluorimetry

Author:

Jackson Thomas W.,Scheibly Chris M.,Polera M. E.,Belcher Scott M.

Abstract

AbstractPer- and polyfluoroalkyl substances (PFAS) are a diverse class of synthetic chemicals that accumulate in the environment. Many proteins, including the primary human serum transport protein albumin (HSA), bind PFAS. The predictive power of physiologically based pharmacokinetic modeling approaches are currently limited by a lack of experimental data defining albumin binding properties for most PFAS. A novel thermal denaturation assay was optimized to evaluate changes in thermal stability of HSA in the presence of increasing concentrations of known ligands and a structurally diverse set of PFAS. Assay performance was initially evaluated for fatty acids and HSA binding drugs ibuprofen and warfarin. Concentration response relationships were determined and dissociation constants (Kd) for each compound were calculated using regression analysis of the dose-dependent changes in HSA melting temperature. Estimated Kd values for HSA binding of octanoic acid, decanoic acid, hexadecenoic acid, ibuprofen and warfarin agreed with established values. The binding affinities for 24 PFAS that included perfluoroalkyl carboxylic acids (C4-C12), perfluoroalkyl sulfonic acids (C4-C8), mono- and polyether perfluoroalkyl ether acids, and polyfluoroalkyl fluorotelomer substances were determined. These results demonstrate the utility of this differential scanning fluorimetry assay as a rapid high through-put approach for determining the relative protein binding properties and identification of chemical structures involved in binding for large numbers of structurally diverse PFAS.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins

2. Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part II: the remaining pieces of the puzzle;Environ. Int,2014

3. Sources, Fate and Transport of Perfluorocarboxylates

4. Monitoring of Perfluorinated Compounds in Aquatic Biota: An Updated Review

5. Organisation for Economic Co-operation and Development. Toward a New Comprehensive Global Database of Per-and Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of per-and Polyfluoroalkyl Substances (PFASs). (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3