A PMMA bone cement composite that functions as a drug-refillable depot for localized, multi-window chemotherapeutic treatment of bone cancer

Author:

Cyphert Erika L.ORCID,Kanagasegar Nithya,Zhang Ningjing,Learn Greg D.ORCID,von Recum Horst A.

Abstract

ABSTRACTStandard chemotherapy for primary and secondary bone tumors typically involves systemic administration of chemotherapeutic drugs, such as doxorubicin (DOX). However, non-targeted delivery increases dose requirements, and results in off-target toxicity and suboptimal chemotherapeutic efficacy. When chemotherapy is ineffective, substantial resection of tissue and/or total amputation become necessary – a debilitating outcome for any patient. In this work, we developed a proof-of-concept, non-biodegradable, mechanically robust, and refillable composite system for chemotherapeutic (i.e. DOX) delivery comprised of poly(methyl methacrylate) (PMMA) bone cement and insoluble polymeric γ-cyclodextrin (γ-CD) microparticles. The porosity and compressive strength of DOX-filled PMMA composites were characterized. DOX filling capacity, elution kinetics, cytotoxicity against primary osteosarcoma and lung cancer cells, and refilling capacity of composites were evaluated. PMMA composites containing up to 15wt% γ-CD microparticles provided consistent, therapeutically-relevant release of DOX with ~100% of the initial DOX released after 100 days. Over the same period, only ~6% of DOX was liberated from PMMA with free DOX. Following prolonged curing, PMMA composites with up to 15wt% γ-CD surpassed compressive strength requirements outlined by international standards for acrylic bone cements. Compared to DOX-filled PMMA, DOX-filled PMMA/γ-CD composites provided long-term release with decreased burst effect, correlating to long-term cytotoxicity against cancer cells. Refillable properties demonstrated by the PMMA composite system may find utility for treating local recurrences, limiting chemoresistance, and altering drug combinations to provide customized treatment regimens. Overall, findings suggest that PMMA composites have the potential to serve as a platform for the delivery of combinatorial chemotherapeutics to treat bone tumors.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. Bone Cancer: Diagnosis and Treatment Principles;Am Fam Physician,2018

2. Current and future therapeutic approaches for osteosarcoma

3. J. Lieberman , “Malignant bone tumors,” in AAOS Comprehensive Orthopaedic Review, Rosemont, Ill: American Academy of Orthopaedic Surgeons, 2009, pp. 417–442.

4. Survival after bone metastasis by primary cancer type: a Danish population-based cohort study

5. A. C. Society , “No Title,” Survival Rates for Osteosarcoma, 2021. .

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3