De novo FZR1 loss-of-function variants cause developmental and epileptic encephalopathies including Myoclonic Atonic Epilepsy

Author:

Manivannan Sathiya N.ORCID,Roovers JolienORCID,Smal NoorORCID,Myers Candace T.ORCID,Turkdogan DilsadORCID,Roelens FilipORCID,Kanca OguzORCID,Chung Hyung-LokORCID,Scholz Tasja,Hermann Katharina,Bierhals TatjanaORCID,Caglayan S. Hande,Stamberger HannahORCID,Mefford HeatherORCID,de Jonghe Peter,Yamamoto ShinyaORCID,Weckhuysen SarahORCID,Bellen Hugo J.ORCID

Abstract

AbstractFZR1, which encodes the Cdh1 subunit of the Anaphase Promoting Complex, plays an important role in neurodevelopment by regulating cell cycle and by its multiple post-mitotic functions in neurons. In this study, evaluation of 250 unrelated patients with developmental epileptic encephalopathies (DEE) and a connection on GeneMatcher led to the identification of three de novo missense variants in FZR1. Two variants led to the same amino acid change. All individuals had a DEE with childhood onset generalized epilepsy, intellectual disability, mild ataxia and normal head circumference. Two individuals were diagnosed with the DEE subtype Myoclonic Atonic Epilepsy (MAE). We provide gene burden testing using two independent statistical tests to support FZR1 association with DEE. Further, we provide functional evidence that the missense variants are loss-of-function (LOF) alleles using Drosophila neurodevelopment assays. Using three fly mutant alleles of the Drosophila homolog fzr and overexpression studies, we show that patient variants do not support proper neurodevelopment. With the recent report of a patient with neonatal-onset DEE with microcephaly who also carries a de novo FZR1 missense variant, our study consolidates the relationship between FZR1 and DEE, and expands the associated phenotype. We conclude that heterozygous LOF of FZR1 leads to DEE associated with a spectrum of neonatal to childhood onset seizure types, developmental delay and mild ataxia. Microcephaly can be present but is not an essential feature of FZR1-encephalopathy. In summary, our approach of targeted sequencing using novel gene candidates and functional testing in Drosophila will help solve undiagnosed MAE/DEE cases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3