Genome wide association mapping of Pyrenophora teres f. maculata and Pyrenophora teres f. teres resistance loci utilizing natural Turkish wild and landrace barley populations

Author:

Clare Shaun J.ORCID,Oğuz Arzu Çelik,Effertz Karl,Poudel Roshan Sharma,See Deven,Karakaya Aziz,Brueggeman Robert S.ORCID

Abstract

ABSTRACTUnimproved landraces and wild relatives of crops are sources of genetic diversity that were lost post domestication in modern breeding programs. To tap into this rich resource, genome wide association studies in large plant genomes have enabled the rapid genetic characterization of desired traits from natural landrace and wild populations. Wild barley (Hordeum spontaneum), the progenitor of domesticated barley (H. vulgare), is dispersed across Asia and North Africa, and has co-evolved with the ascomycetous fungal pathogens Pyrenophora teres f. teres and P. teres f. maculata, the casual agents of the diseases net form of net blotch and spot form of net blotch, respectively. Thus, these wild and local adapted barley landraces from the region of origin of both the host and pathogen represent a diverse gene pool to identify new sources of resistance, due to millions of years of co-evolution. The barley - P. teres pathosystem is governed by complex genetic interactions with dominant, recessive, and incomplete resistances and susceptibilities, with many isolate-specific interactions. Here we provide the first genome wide association study of wild and landrace barley from the Fertile Crescent for resistance to both forms of P. teres. A total of 14 loci, four against P. teres f. maculata and ten against Pyrenophora teres f. teres, were identified in both wild and landrace populations, showing that both are genetic reservoirs for novel sources of resistance. We also highlight the importance of using multiple algorithms to both identify and validate additional loci.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3