Abstract
ABSTRACTGABAergic inhibitory neurons, through their molecular, anatomic and physiological diversity, provide a substrate for the modulation of ongoing cortical circuit activity throughout the sleep-wake cycle. Here, we investigated neuronal activity dynamics of parvalbumin (PV), vasoactive intestinal polypeptide (VIP) and somatostatin (SST) neurons in naturally-sleeping head-restrained mice at the level of layer 2/3 of the primary somatosensory barrel cortex of mice. Through calcium-imaging and targeted single-unit loose-patch or whole-cell recordings, we found that PV action potential (AP) firing activity was largest during both NREM (non-rapid eye movement) and REM sleep stages, that VIP neurons were activated during REM sleep and that the overall activity of SST neurons remained stable throughout the sleep/wake cycle. Analysis of neuronal activity dynamics uncovered rapid decreases in PV cell firing at wake onset followed by a progressive recovery during wake. Simultaneous local field potential (LFP) recordings further revealed that, except for SST neurons, a large proportion of neurons were modulated by ongoing delta and theta waves. During NREM sleep spindles, PV and SST activity increased and decreased, respectively. Finally, we uncovered the presence of whisking behavior in mice during REM sleep and show that the activity of VIP and SST is differentially modulated during awake and sleeping whisking bouts, which may provide a neuronal substrate for internal brain representations occurring during sleep.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献