Ipsilesional motor cortex activation with high-force unimanual handgrip contractions of the less-affected limb in participants with stroke

Author:

Andrushko Justin W.ORCID,Gould Layla,Renshaw Doug W.,Forrester Shannon,Kelly Michael E.,Linassi Gary,Mickleborough Marla,Oates Alison,Hunter Gary,Borowsky Ron,Farthing Jonathan P.ORCID

Abstract

AbstractStroke is a leading cause of severe disability that often presents with unilateral motor impairment. Conventional rehabilitation approaches focus on motor practice of the affected limb and aim to suppress brain activity in the contralesional hemisphere to facilitate ipsilesional hemispheric neuroplasticity subserving motor recovery. Previous research has also demonstrated that exercise of the less-affected limb can promote motor recovery of the affected limb through the interlimb transfer of the trained motor task, termed cross-education. One of the leading theories for cross-education proposes that the interlimb transfer manifests from ipsilateral cortical activity during unimanual motor tasks, and that this ipsilateral cortical activity results in motor related neuroplasticity giving rise to contralateral improvements in motor performance. Conversely, exercise of the less-affected limb promotes contralesional brain activity which is typically viewed as contraindicated in stroke recovery due to the interhemispheric inhibitory influence onto the ipsilesional hemisphere. High-force unimanual handgrip contractions are known to increase ipsilateral brain activation in control participants, but it remains to be determined if this would be observed in participants with stroke. Therefore, this study aimed to determine how parametric increases in handgrip force during repeated contractions with the less-affected limb impacts brain activity bilaterally in participants with stroke and in a cohort of neurologically intact controls. In this study, higher force contractions were found to increase brain activation in the ipsilesional/ipsilateral hemisphere in both groups (p = .002), but no between group differences were observed. These data suggest that high-force exercise with the less-affected limb may promote ipsilesional cortical plasticity to promote motor recovery of the affected-limb in participants with stroke.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Andersson JLR , Jenkinson M , Smith S (2007a) Non-linear registration aka spatial normalisation FMRIB Technial Report TR07JA2.

2. Andersson JLR , Jenkinson M , Smith S (2007b) Non-linear optimisation FMRIB Technial Report TR07JA1.

3. High force unimanual handgrip contractions increase ipsilateral sensorimotor activation and functional connectivity;Neuroscience,2021

4. The primate reticulospinal tract, hand function and functional recovery

5. Stroke rehabilitation;Contin Lifelong Learn Neurol,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3