Computational fluid dynamics provide evidence for a compensatory suction feeding like effect in the predatory strike of dragonfly larvae

Author:

Koehnsen AlexanderORCID,Brede MartinORCID,Gorb Stanislav NORCID,Büsse Sebastian

Abstract

AbstractMost fast-moving aquatic predators face the challenge of bow wave formation. Water in front of the predator alarms or even displaces the prey. To mitigate the formation of such a bow wave, a strategy aiming at pressure reduction via suction has evolved convergently in several animal groups: compensatory suction feeding. The aquatic larvae of dragonflies and damselflies (Insecta: Odonata) are likely to face this challenge as well. They capture prey underwater using a fast-moving raptorial appendage, the so-called prehensile labial mask. Within dragonflies (Odonata: Anisoptera) two basic shapes of the prehensile labial mask have evolved, with an either flat and slender or concave distal segment. While the former is a pure grasping device, the latter is also capable of scooping up smaller prey and retaining it inside the cavity by arrays of bristle-like structures. The hydrodynamics of the prehensile labial mask was previously unknown. We used computational fluid dynamic (CFD) simulations of the distal segment of the mask, to investigate for the first time how different shapes of the mask impact their function. Our results suggest that both shapes are highly streamlined and generate a low-pressure area, likely leading to an effect analogous to compensatory suction feeding. This presents a vivid example of how convergent evolution enables very different animal groups to successfully deal with the challenges of their environment. It may also be an interesting concept for technical application in small scale grasping devices; e.g. for simple sampling mechanisms in small-sized autonomous underwater vehicles (μAUVs).

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3